Symmetric Monotone Venn Diagrams with Seven Curves

نویسندگان

  • Tao Cao
  • Khalegh Mamakani
  • Frank Ruskey
چکیده

An n-Venn diagram consists of n curves drawn in the plane in such a way that each of the 2 possible intersections of the interiors and exteriors of the curves forms a connected non-empty region. A k-region in a diagram is a region that is in the interior of precisely k curves. A n-Venn diagram is symmetric if it has a point of rotation about which rotations of the plane by 2π/n radians leaves the diagram fixed; it is polar symmetric if it is symmetric and its stereographic projection about the infinite outer face is isomorphic to the projection about the innermost face. A Venn diagram is monotone if every k-region is adjacent to both some (k − 1)region (if k > 0) and also to some k+1 region (if k < n). A Venn diagram is simple if at most two curves intersect at any point. We prove that the “Grünbaum ” encoding uniquely identifies monotone simple symmetric n-Venn diagrams and describe an algorithm that produces an exhaustive list of all of the monotone simple symmetric n-Venn diagrams. There are exactly 23 simple monotone symmetric 7-Venn diagrams, of which 6 are polar symmetric.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Venn Diagrams and Symmetric Chain Decompositions in the Boolean Lattice Preliminary Draft

In this paper we show that symmetric Venn diagrams for n sets exist for every prime n, settling an open question. Until this time, n = 11 was the largest prime for which the existence of such diagrams had been proven. We show that the problem can be reduced to finding a symmetric chain decomposition, satisfying a certain cover property, in a subposet of the Boolean lattice Bn, and prove that su...

متن کامل

Which n-Venn diagrams can be drawn with convex k-gons?

We establish a new lower bound for the number of sides required for the component curves of simple Venn diagrams made from polygons. Specifically, for any n-Venn diagram of convex k-gons, we prove that k ≥ (2 − 2 − n)/(n(n − 2)). In the process we prove that Venn diagrams of seven curves, simple or not, cannot be formed from triangles. We then give an example achieving the new lower bound of a ...

متن کامل

New Roses: Simple Symmetric Venn Diagrams with 11 and 13 Curves

A symmetric n-Venn diagram is one that is invariant under n-fold rotation, up to a relabeling of curves. A simple n-Venn diagram is an n-Venn diagram in which at most two curves intersect at any point. In this paper, we introduce a new property of Venn diagrams called crosscut symmetry, which is related to dihedral symmetry. Utilizing a computer search restricted to diagrams with crosscut symme...

متن کامل

Generating simple convex Venn diagrams

In this paper we are concerned with producing exhaustive lists of simple monotone Venn diagrams that have some symmetry (non-trivial isometry) when drawn on the sphere. A diagram is simple if at most two curves intersect at any point, and it is monotone if it has some embedding on the plane in which all curves are convex. We show that there are 23 such 7-Venn diagrams with a 7-fold rotational s...

متن کامل

Venn Diagrams with Few Vertices

An n-Venn diagram is a collection of n finitely-intersecting simple closed curves in the plane, such that each of the 2n sets X1∩X2∩· · ·∩Xn, where each Xi is the open interior or exterior of the i-th curve, is a non-empty connected region. The weight of a region is the number of curves that contain it. A region of weight k is a k-region. A monotone Venn diagram with n curves has the property t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010